

AATrack Review Report

Philippe Canal, Jim Kowalkowski

1 Introduction

1.1 Purpose

The purpose of this report is to list some of the problems we’ve encountered and
possible changes needed in the AA package. This package requires these
changes so that it can be better maintained and enhanced by others, so further
performance improvements can be made on it, and so that it can to be more
easily studied in terms of code and effects of changing algorithm parameters.

We found that the AA package was quite difficult to change while trying to
increase its execution speed. Two reasons for this are the difficulties we had in
understanding the side effects of invoking functions within this monolithic
package and lack of understanding how the quality of results shifts as a result of
code changes. This report will highlight designs decisions that led to these
difficulties and possible ways to remove some of the problems.

We recognize that producing a tracking package is a monumental effect and that
the road-finding technique used in the AATrack package is known to yield good
results. Due to time constraints, this report focuses almost entirely on negative
aspects of the code within the package; this is, of course, its purpose. The author
has included many constraints that reduce the number of combinations that need
to be explored; effectively reducing the time it takes to locate tracks.

The document will suggest changes that will affect:

• Code readability,

• Code maintenance,

• The speed of the package,

• And validation (are the results correct).

1.2 Rationale

Why did we end up here? We chose an event from a high luminosity run that
took long to process. After applying several patches to speed up the program
and running the profiler, we made the following observations regarding timing of
algorithms. The number on the left is the fraction of CPU time spent in this
function and below.

 GtrMetaPkg::processEvent(edm::Event&) : 0.80

 GtrHtfAAPkg::findTracks() : 0.74

 AA::HitMap::selectHypo(int&, bool) : .38

AA::extrapolateTrack(…) : .29

AA::TrkHypo::addHit(AA::HitFinder*) : .14

 GtrHtfAAPkg::addHtfTracks() : .22

 AA::findVrt(bool, bool) : .08

 AA::TrkBox::sectectTracks(book) : most of remaining time

One can draw several conclusions from this result. First, the tracking algorithms
are taking up 80% of the CPU time on high luminosity events. We see that the
HTF algorithm contributes about 22% of that time, leaving AA with 68%. This
high number is the main reason we ended up discussing AA tracking.

Looking at the time spent in the top seven functions, we see that four of them are
related to memory management (pthread functions are called from chunk
functions – the memory management functions) and none contribute more that
about 3% to the overall time.

CalNadaReco::runNADA(ErrorLog&, edm::Event&) 0.031

__pthread_alt_unlock 0.023

chunk_free 0.021

operator*(HepMatrix const&, HepSymMatrix const&) 0.020

__pthread_alt_lock 0.017

wash_list(vector<Trajphi>&,Hashmap<…> const&, bool) 0.016

chunk_alloc 0.016

We know that modern processors require good memory cache utilization to
achieve high performance. If data structures are not designed with “locality of
reference” in mind (putting things close together that are used together), program
performance suffers as a result. Using too much caching or too many look up
tables can have similar results. The observations that the memory management
system is used somewhat heavily and the time is spread out so evenly amongst
the functions lead us to some of the following conclusions:

• Data structures within algorithms are poorly designed or poorly organized,

• The data used by algorithms may not be efficiently accessed by the higher-
level algorithms (an algorithmic strategy problem),

• And the choices of containers or collection classes used within the algorithms
are suboptimal.

Another issue on modern processors is branching. One set of modification that
made a different was removal of “if” statements from within loops. This meant
creating two or more separate loops that did one function instead of one loop
performing many functions. This change not only made the code easier to
understand, but also sped it up.

1.3 Complications

The available tools do not make it easy to tell if a function is invoked many times
or if the code within a function takes a long time to run. What the tools are good
for is allowing us to move up the call tree until we can account for significant
amounts of time. Within the algorithms we targeted, mid-level algorithms or sub-
algorithms cannot be identified for replacement (e.g. bubble sort, minimization
routines, differential equation handling routines) without major upheaval.

It is difficult to predict what effect a change will have in execution speed before
you make it and then run tests. Some of the changes that already took place
such as the sin/cos and similarity transform improvements were first tested
outside the algorithm and d0reco and then integrated after we had an estimate of
the effect. Most of the items covered in this report may not be testable in this
way. Some of the changes may not produce a substantial change in execution
time and exist solely as a way to make the package more maintainable and more
amenable to change and locating problems.

We had a difficult time evaluating the effects of making changes to the code. We
have heard good things about recocert, but were unable to make use of it. Even
if we could use it, it is our understanding that it is a high-level view and we were
hoping for something which gave us more insight as to what and where the
problems might lie (e.g. which tracks were missed or which fake tracks were
accepted and why). We were also unable to get a MC event sample at the
current luminosity to use for evaluating the results of the algorithm – again, this
may be our fault for not making a properly formed request to the right people.
One other thing that we could not locate was an MC event sample with data that
looked like something we would see next year or the year after. We also have a
difficult time starting up a graphical event display – this was mostly due to lack of
locating the correct person to walk up through the procedure.

2 Overview

While making speed improvements to AA, we ran into many difficulties. In this
section we discuss many of them at a high level and suggest ways to improve
the situation.

2.1 Debugging

There are monitoring and debugging statements spread throughout the code.
The facilities used have an impact on performance regardless if the debugging
levels are set high enough to print messages or not. It would be useful to
distinguish detailed trace information from information that is used to check if the
algorithm is producing good or interesting results. The former should be able to
be removed completely from the code if the proper compilation flags are set. The
latter should be always present, but not used in heavily traversed paths of the
algorithm. The output from this facility should be easy identified and selected
from the output with any “grep” like command. A simple way to do this is to
produce record like structure with a key at the first column, such as “AATrack”.

One way to track entrance and exit from routines is to use a technique like the
one in file AATrack/src/Waiter.hpp. Here the Waiter class holds the data that
needs manipulation upon entry and exit and a WaiterOperator class uses a
constructor/destructor to do the manipulation. Preprocessor “#ifdef” statements
can be used to nullify the effects of the class, which will cause its complete
removal during compilation.

A simple technique for having code present during special build (for printing
detailed variable contents) is to use assert-like macros. The purpose of the
macro is to remove the code completely if the compile is an optimized one. For
debug builds, the macros leave calls to monitoring facilities in.

Use of runtime assertions is also good practice. These can be used at strategic
points in code to make sure that variables are what you expect them to be. D0
prevents assertions from being removed from code even during an optimized
build.

2.2 Global Variables

This library is littered with global variables. The entire package is driven off global
variables. This feature makes it very difficult to know where the values of these
variables are set, modified, and manipulated. The class structures give the
appearance that more than one instance of any class can be constructed and
used. The presence and use of global variables, in most cases, prevents this
from happening. Many of the global variables are defined in AA.hpp/AA.cpp and
are used and modified throughout the code.

A reconstruction class derived from the framework Package class is the place for
variables with job-long life times. This is, of course, standard procedure for D0. A
package object has a unique identity and state that lasts as long as the job.
Using this technique allows for easier use of configuration information (comes in
on the Package constructor. It appears that one of the reasons for the global
variables is to allow the objects (and memory within) to live longer than one
event. The Package constructor can use the reserve() method of some
containers such as vector to preallocate work space. For other containers, such
as list and map, we will need to check the implementation to see if a call to
clear() deletes the memory and does not actually save the memory allocations. If
deletions are done, then special allocators (the second hidden template
parameter) must be used to make use of memory pools.

Another way to contend with the global variable situation is to remove them; just
make the instances at the beginning of the event processing. The clean up of
residual state may be just as expensive as generation of a new instance. We can
probably evaluate and compare the cost of both types of operations in an
isolated test.

2.3 Configuration from Arrays

Several of the classes are configured by reading arrays of doubles. One place
this can be found is in the geometry. It is difficult to find the source of these
numbers and what the meanings of the numbers at each index value are. What

makes matters worse is that the interpretation of values later in the array may
depend on values earlier in the array.

The RCP system provides a simple to use interface that makes it easy to identify
the names of each configuration parameter.

Context dependent interpretations of values in arrays should be removed
completely. Each context should be given a complete set of numbers – unique
for that context, where each value is named appropriately.

Does it make sense to be able to arbitrarily inject new configuration data arrays
into an object at any time? This may be useful during algorithm testing, but it
seems then that just constructing a new instance with the new configuration will
do the job. Is it possible to remove the methods for reconfiguration? The idea of
changing configuration parameters in production sounds like big trouble.

2.4 Overloaded meaning of classes

The interpretation of private data in some classes depends on values within that
data. Methods of some classes are usable (and only make sense) depending on
values in the private data. These classes can be thought of as having a multiple
personality. This is bad because code that uses these classes must ask what the
current active “personality” is before the any methods of the objects are called.
Looking at the where the class is used does not give one a good idea of how the
code is using it. A good example of this feature is in the Elm class, with an
interface that includes all types of subdetectors.

One way to eliminate this feature is to create one class for each type of thing
represented. In most cases code needs to work with specific objects anyway,
and having the specific type makes it more obvious what kind of processing is
going on. If all the various types are related by some common interface, or can
be nested inside each other, then an abstract base class is in order.

2.5 Redundant code

There are several methods of some classes that contain nearly identical code
and algorithms. Modifying one without modifying another is most likely
hazardous. It is difficult to know of the existence of these multiple, similar
algorithms without a close examination of many different parts of the code. One
example of this is State5::propagate. The C++ template facility exists to address
problems such as this.

Is redundancy ever appropriate? Yes, the changes we made to
HitMap::makeTrack discussed in the postmortem section of this document
introduce some redundancy. At the same time they increase readability and
speed of execution. In many cases small, inline function can take the place of
redundant code; the maintenance is in one place and the compiler replicates it
for you.

2.6 Use of abstract classes

Abstractions such as the generic Hit exist almost solely for hits to be held in a
common container. The problem with this is that the algorithm almost always
wants to work with the concrete types of hits. Nearly all code using hits in the
abstract form needs first to ask the hit what type it really is, cast it to that real
type, and then run code specific to that type. In some cases the assumption is
made that because we are in this body of code, the type must be this particular
kind of Hit (e.g. SMTHit). The existing code does not use the dynamic_cast
feature of C++, so if the assumption is wrong, the cost is corrupted results and
memory. This feature affects the ability to make changes to this code. If the older
code assumes a specific ordering of Hit objects and uses a hard cast to convert
these object to there underlying type, then the object providing the ordered list is
rigidly bound to the calling code. Bad side effects caused by upgrading parts of
the algorithm may go unnoticed by the testing suite or my cause errors that are
very difficult to trace down to the original source.

If the casts are converted to true dynamic_casts, then there will be a
performance penalty. Mixing of objects in a container using this generic type of
storage can also be inefficient because the code using the Hit needs to always
first ask the actual flavor of the hit before doing the cast to the correct type.

An abstract or base class that knows about its derived types is not really serving
the purpose that these constructs are made for. The main purpose of base
classes is so derived types can be used in a general fashion using the base class
interface. In many cases here, the base class is strictly used to mix types in a
container.

One possible solution to this problem is to store each type is a separate
container. Using a container of objects should be explored instead of using
containers of pointers. Where and when pointers to objects make more sense,
buffer pools can be used to reduce the burden on the memory management
system. When code does need to make use of the type in abstract form, a
container with pointers to abstract types can be used.

2.7 Overuse of lists

This package uses lists heavily to manage tracks and other information. Lists do
not have good memory management characteristics for running in algorithms
such as this. They also do not provide good locality of reference. In a few places
lists are sorted many, many times. This sorting actually shows up in the
performance profile. Sorting lists is an inefficient operation.

Unfortunately there is not a simple way to correct this situation. Here is a list of
some of the things that have worked well to improve performance in the past:

• Changing from a list to a deque,

• Using a vector, sorting it when appropriate so that undesirable entries land at
the end, the chomping the bad entries off the end (this technique works well
with pointers to objects),

• Watching for unordered entries as new objects are added to the end of the
list, and only sorting if it is necessary,

• Use a specialized allocator for the list to reduce memory management
interactions.

2.8 Overuse of maps

Maps are very easy to use, but are not best for many situations. The lookup time
is Ο(n log n) and the memory requirements are high compared to binary search
in a vector. Iteration through a map is more costly than a sorted vector because
the iterators traverse a tree-like structure. A map used as a sorted array is also
likely to have poor locality of reference. If the map is used strictly for keeping an
always-sorted data structure, then there might be a better way to solve the
problem.

If a data structure is filled early on and traversed or searched many times, then a
sorted vector is probably going to yield better performance than a map. If a data
structure is used mostly for searches and ordered traversal is not important, then
a hash table is probably better suited. Other projects have used a vector-like
object that watches for items pushed on the back of the vector to be inserted out
of order and marks them as such. The first access to an element, where the
unordered flag is set, will cause the sort to occur.

2.9 Use of maps with double as key

Use of doubles as keys in a map/multimap does not make any sense because of
the uncertainty in calculation results. On the Intel platform where 80 bit floating
point arithmetic is done inside the processor and only 64 bits are represented in
memory can lead to ambiguous results when comparing doubles for insertion or
query into/from the map. Turning the key from a floating point value to a fixed
point integer representation does resolve the problem within the map class, but
still does not address the comparison problem; it is just pushed into a different
piece of code.

2.10 Perplexing geometry

All different types of geometric or detector elements are fused into one class.
Interpreting the indexing scheme is difficult and the storage and manipulation of
these is inefficient due in part because of the base 10 encoding. Classes are not
used to distinguish different types of detector components. The questions that
can be asked of geometry are limited and to some extent produce pointers to
internal data or parts of internal data. This feature is not in itself bad; it only
becomes a problem when users of the code rely on internal details that should
not be exposed. The topic of geometry is covered in more details later in this
document.

2.11 State5

More utility classes and abstractions are necessary to make this easier to
comprehend and modify. The data within the class can be made easier to
understand and manipulate by introducing objects like Helix, and

CovarianceMatrix, along with a set of functions that operate on these objects.
The interface of this class appears to perform many functions, including
propagation through a non-uniform magnetic field, filtering, momentum and
position calculations, smoothing, packing/unpacking, and internals resetting. In
addition, many of the methods, such as propagate take arguments (as doubles
and vectors) that are out parameters. The variable names did not give us much
of a clue as to what the returned data was and how it is used.

A big problem with simple out parameter use is that is it not always clear when
one is looking at the calling function, whether or not arguments past into the
function will be modified or not. This is especially true when looking at an
intermediate-level function; in other words function B in the call sequence A->B-
>C. The method State5::findField(Hit* ph, double& li, Vector3& xg, double& cz,
double& cr) is an example. Here ph is not const and is used in further
downstream calls. Without careful examination of the downstream call function
signatures, it is not clear if parts of ph are actually modified as a result of being
used as arguments.

Out parameters are, in many cases, useful. A good way to make use of out
parameters is to make sure that the input parameters are const, and group all the
output parameters into a small struct, that is filled out by the called method. The
called method should be const, to easily indicate that the state of the object filling
the struct has not be modified as a result of the call.

The method State5::propagate(double l2, double& cz2, double& cr2) appears like
many of the other methods that, given a set of parameters, will return other
information without being declared const. This method actually causes a side
effect of altering the object state. Apparently this has caught someone’s attention
and a comment was added to make this more easily known.

2.12 Functions with side effects

Many of the functions perturb object state and global state when they are called.
Making changes to callers of these functions is difficult, especially when these
are called within loops. An easy-to-locate set of methods that fall into this
category are the methods that return nothing and take no arguments. Examples
are void Elm::fillBorders() and HitMap::makeHits2D(). Some return bools, such
as HitMap::newLayer3() and HitMap::newPoint2().

This method of triggering state changes works well with iterators. One reason for
this is that an iterator has a single function – to advance its way through a data
structure. Even the call (function name) helps express the action that is taking
place (e.g. operator ++). It is not clear that the programming technique used in
HitMap with all the new/next methods matches well with the iterator model; there
are too many cached variables and dependencies in perturbations. Is also differs
because the container also houses the cursor or position we are at instead of a
separate object.

The method TrkBox::selectTracks(bool) illustrates another type of problem we
had in analyzing the code. Here the code in this method goes out to global data

(HitBox in this case) and changes its state as a side effect of getting called.
Seeing this has lead us to believe that this is a brittle system; changing the call
ordering of any part of the system can cause unknown changes in results.

Another interesting example is void Vrt::makeHit(). Here Vrt object state is
modified and so is the state of a global variable. Another example of side-effects
was State5::Propagate, given in the State5 section.

Methods that modify global state as a side effect of being called can be located
by searching for variables used that start with “AA::”.

2.13 Inconsistent use of const

Many methods do not modify the state of an object and are not declared const. A
simple example is State5::propagateDefault(double& c2, double& cr). This
method obviously does not modify state and is not declared as const. Knowing if
a method is truly const helps other developers better estimate the impact a
change in the function will have.

2.14 Hard-coded constants

There are numerous unidentified constants within the code. It is difficult to know if
some of the checks involving these constants are necessary or redundant. The
constants should have a meaningful label associated with them or be
configurable through RCP system if they can change. This will allow others to
understand the purpose of the number and allow one place where changes can
be made to that number.

2.15 D0 infrastructure usage

The AA package appears to avoid use of D0 infrastructure such as ErrorLogger.

Some facilities seem not to be used as intended, such as RCP. The code that
manipulates RCPs is wrapped in exception catches to allow for default values in
code. This type of coding is not allowed in algorithms at D0. Numerous examples
can be found in file AATrack/fwk/AAPkg.cpp.

The geometry constants appear to be pulled out of the D0 geometry objects
using reasonably named methods and placed into arrays of doubles or floats.
Within AATrack we only see the index into the double array, which makes it
difficult to know what the value represents.

The interface to the AA package is a set of global functions and global data.

2.16 Little or no encapsulation

Some of the objects give out pointers to data members to clients to be directly
manipulated or allow any object to adjust their member data directly. This makes
it very difficult to know how and when the state of an object is affected. In
addition, some of the client code expects a certain ordering of data in collection
held within other objects. This prevents reorganization – both bodies of code
have intimate knowledge of each others contents and are, in a way, locked
together. An example of producing data members is

170 int q() const {return _q;}

171 Jet* jet() const {return _pj;}

172 int jetSign() const {return _impSign;}

173 PType pType() const {return _type;}

174 MuoGlb* muon() const {return _pmu;}

175 Trk* track() const {return _ptr;}

from class Ptl. Here even a const version of a Ptl can give out an unprotected
copy of data members. Other examples are in the ElmBox methods rLayers()
and zLayers(), and also TrkBox::tracks().

There are many cases where structs are the correct solution. There is no
encapsulation with structs; they are just data organizational components. It is the
object that is a mix of struct and class that caused us problems because it was
unclear where the true management of the data lived – or if the data was
manipulated in many places.

Here is an example from TrkHypo::addHit().

496 if(pit->missAxial()) {

498 _missIn.push_back(make_pair(pit->elementAxial(),AA::AXIAL));

499 } else if(pit->missStereo()) {

501 _missIn.push_back(make_pair(pit->elementStereo(),AA::STEREO));

502 }

Here the variable pit is of type HitFinder. In this case pit is used mostly as a
bunch of state – you check a flag and then use other data in the object
depending on the state. Another way to approach this problem could be to have
a method called HitFinder::addMisses(list_to_fill) that performs this action as part
of the HitFinder code instead of as part of the TrkHypo class.

2.17 Cached Variables

Classes like HitFinder, HitMap, and State5 cache many variables. In some cases
there variables form groups with common structure, but there is no struct which
holds the information. The HitMap class is one example of this. Three positions
are maintained using many individually named data members. A simple utility
structure could help one in understanding this code and also allow for a single
place to name and manipulate these variables.

In some cases, such as MapC, the interface actually forces a client class to
cache several variables in order to manipulate this data structure. The dual
iterator interface of methods forward() and backward() are examples of this.

These cached variables should be reviewed to see if they are really necessary.
They increase the size of the object and also require code in many places to
check if they are valid or need to be reset.

2.18 Derivation from Standard Containers

Example of classes derived directly from standard containers are Chain, MapC,
Trk, and Ptl. These containers were not designed to be used in an inheritance
tree and it is considered bad practice to do so. For one, there is no virtual
destructor, so the derived object cannot be used as a base object in a
reasonable fashion. The reason for this appears to be that several of the

methods of a standard container were needed in the derived class and that this
was an easy way to grow the methods (implementation inheritance). This mostly
just makes it difficult for someone to understand what methods are really
necessary and useful in manipulating the derived object. Are methods splice,
unique, merge, swap, and remove really appropriate for a Chain? A better way to
organize this is to have the container as a private data member and produce
methods that call through to the container methods. Another way is to use private
inheritance and bring the base class methods forward into the derived with the
using statement.

Another interesting case is the Ptl derivation from Trk. The Trk object does not
appear to be designed for inheritance.

2.19 Important Call Sequences

Many of the objects require calls to methods in a particular sequence. The
knowledge of this sequence is kept in code that is using the class. Changing the
behavior of this class is made difficult because all the clients must be found and
upgraded to reflex the different call ordering. Look at AA:findTracks() as a simple
example of this behavior. The first two lines force the global hitMap object to
makeHits2D() and then do a fill operation. Later the selectHypo() method is
called which changes the global trkBox, followed by a trkBox.selectTracks, which
first goes and modifies the global hitBox.

2.20 Variable Naming

It took us a long time to discover the meaning of some of the short variables,
such as li, vxx, cr, xq, xl, xgs, _ha, _mz, _saa, etc.. More descriptive names or a
translation table at the beginning of the function or file would have made our life
much easier. The three character class names could also be made more
descriptive.

3 Some Proposed Change Details

Here we present some ideas of how a few components can be improved.

3.1 Geometry

Each unique detector component should have a corresponding class that models
it; this is idea behind object oriented programming. This means that the Elm and
ElmBox classes and associated utility functions local(), index(), indexAxial(),
indexStereo(), and id() need to be redesigned. For example, Elm can be broken
up in at least four classes, one for CFT, SMT, SMTD, and FDISK. Each of the
types of indices should have unique classes for easy manipulation and decoding.
Base 10 index packing is very inefficient and should be converted to base 16 so
that shifts and logical instructions can be used instead of multiplication and
division.

A significant fraction of the code currently in AATrack is used to answer
questions like ‘what are the next detector elements in the direction followed by
the current track?’ and ‘what are the coordinates and errors matrices in the local

frame of references?’ We strongly recommend that existing packages (Geant4,
ROOT Geometry Package) which are designed to answer those questions be
looked into as a replacement for the current geometry classes. At the very least
those packages might provide a good template for redesigning the class
structure and the objects relationship for the AATrack geometry.

3.2 The MapC Class

This utility class is one of the simplest in the system and exists somewhat in
isolation of the other classes. It has several interface design defects that are
worth mentioning. First, it is derived from a standard container, which was
covered earlier in this report. The interface separates things that should travel as
a group and exposes the pieces directly to the user. Three important pieces of
information are phi, the start iterator, and the end iterator. The user is required to
hold onto all three of these and pass them back to methods such as forward()
and nextBestC() as arguments. If the iterators point at the end of the map, then
they are treated in a special way. One way to improve this interface is to produce
a special utility class, let’s call it MapC::Cursor, which holds all the information
together as a unit. This class can be constructed with a phi and hold and initialize
the iterators properly for use with MapC. This way the user is ensured that the
data that is manipulated in subsequence calls is managed appropriately. It also
makes the interface easier to understand and use properly.

3.3 Trk, TrkHypo, and Chain Notes

The main data structures within these classes are standard library linked lists,
which are used to build up a graph or tree-like structure. Linked lists from the
STL provide great flexibility and are not intrusive. As mentioned earlier, the
properties of these containers may not be good for tracking. The “zipping” of
tracks is apparently necessary because of the memory requirements of the
tracking structures. Using alternative means of storing and manipulating tracks
may reduce or remove the need for the zipping and improve algorithm speed.
The boost Graph library uses one such alternative method for representing
graphs and trees. It uses a series of simple arrays to represent vertices and
edges in the graph. Another method is to use intrusive lists. In other words,
include the pointers to parent, child, and sibling nodes directly in the nodes.
Unfortunately both of these methods could end up not improving the readability
of the code. It may be possible to use elements of these different techniques,
such generating a simple vector of all considered tracks and using an index into
that array within the track hypothesis tree data structure.

Tracks contain hits and it looks as though Hits point back to tracks (TrkZips). This
circular dependency complicates the management of state in the program and
makes it difficult to follow the logic. The Vrt and Trk classes have a relationship
like this also. A Trk is a ChainList and a Chain point to a Trk. These relationships
can almost always be represented as separate associations, i.e. tuples that tie
the elements together.

The track parameters are represented in different ways in different parts of the
code. In ChainZip, they are simply five floats. In State5, they are an array of
doubles. There should be a single class that represents track parameters. If both
double and float representations are needed, then this is an ideal candidate for a
template class.

3.4 HitFinder

This class has a very confusing interface that manipulates, checks, and accesses
many things in the package. We did not have time to understand how this class
functions in enough detail to make good comments about it. A better geometry
system, better separation of concerns, and better utility classes may allow this
class to be simplified.

3.5 Hit Classes

One of the major hindrances to performance and algorithmic improvement in the
current AATrack code is the organization of the hit processing code. The
implementation of the tracking inside the CFT and SMT, which have a very
similar general control flow but with sometime quite different details, are totally
intermixed. For example, it is only after refactoring code similar to

 For each hit in 1st detector element

 …

 if (areWeInCft) { … }

 For each hit in 2nd detector element

 …

 if (areWeInCft) { … }

 For each hit in 3rd detector element

 …

 if (areWeInCft) { … }
into

if (areWeInCFT)

 For each hit in 1st detector element

 …

 For each hit in 2nd detector element

 …

 For each hit in 3rd detector element

 …

Else

 For each hit in 1st detector element

 …

 For each hit in 2nd detector element

 …

 For each hit in 3rd detector element

 …

that were able to detect some calculations that were totally useless in one case
or another and some that were redundantly made in the inner most loops.
Similar types of refactoring should be done in several places in the code
(including the HitFinder class).

For example, we could have a HitContainer abstract class with two
implementations: HitSMTContainer and HitCFTContainer. These classes would
encapsulate the selection criteria for each of the detector. This arrangement
would allow for a better separation and understanding of the selection algorithms.

The HitContainer should be organized in a similar fashion as the geometrical
object. Hence the main driving routine might be

 Given a track stub t

 elemList = GeometryPackage->GetListOfElementsNextOnTrackPath(t,…)

 for each element e in elemList

 find the corresponding HitContainer h

 for (hitIter = h->GetBestHitsToExtendTrack(t);

 hitIter != end; ++hitIter) {

 if (t->TryToExtendWithHit(*hitIter)) break;

 }

4 Speed Improvement Postmortem

In this section we discuss some of the improvements we have already made to
the existing tracking code.

One of the first observations we made from the profiling data was that three of
the top four functions, where the most time was spent, were sin, cos and atan2,
with respective d0reco times of 4.5%, 4.3% and 3%. Since these functions are
quite fundamental, these numbers really indicate that the functions are being
called an extremely high number of times. However, we were still able to improve
the performance by trading of some of the feature of the C library function and
calling directly the Pentium trigonometric assembly instructions.

The C library function for sin and cos contain additional code to normalize and
check the validity of the input and output. Since the inputs used in AATrack are
already known to be valid, we could bypass these checks. In addition, in most
cases both the sin and the cos of an angle were needed at the same time. In this
case we took advantage of the Pentium instruction that does both calculations at
once. We were also able to factor out some of the redundant calls after these
changes were made.

The C library function for atan2 also contains additional code to set the value of
errno in case of arithmetic error. Since AATrack assumes that the result of atan2
will be valid, we were able to bypass the error checking code and directly call the
assembly instrument calculating atan2.

These two optimizations represented a significant gain in performance but should
only be used as a last resort. The longer term solution would have been to
reduce the number of calls to cos, sin and atan2 needed. This is currently quite
difficult to do for AATrack due in part to the readability and maintenance issues
listed in the previous sections.

Another straightforward gain was made by modifying a debugging function that
was taking a std::string object by reference and changing it const char*. In
general, it is sufficient for performance reasons to pass objects by reference
instead of by value. However, in this case the function was being called
relatively often and was called exclusively by passing it a const char* argument.
This meant that despite the string reference, which was used to prevent an object
copy, there were still a lot of temporary std::string objects generated (one per
call). In addition, those constructed strings were useless in the common case

(running without debug message) since the function was not even using the
parameter! The profiler helped us to quickly locate this problem.

The std::list method for calculating the distance between two elements was
ranked 6th for the amount of time spent in itself. We traced down the calls as
coming from calls to std::list::size, which has to scan through the whole list.
However, in most cases this operation was not called to know the current number
of element in the list but was called to know whether the list was empty or not.
Replacing those calls by calls to std::list::empty, which only has to make one test,
significantly improved performance.

Several of the functions in the top 20 most consuming functions were related to
calculating the similarity transform of 5x5 matrices. After some investigations we
realized that the implementation being used was inefficient. Part of the
inefficiency was due to unnecessary memory copy and others were due to the
calling of a virtual member function in the inner most loop of the calculation. In
addition, the return value of this member function was not dependent on any of
the loops indices! We then proceeded to test a custom version of the similarity
transform calculation. This new implementation was C++ template based, to
execute has much of the calculation as possible at run-time and to allow the
compiler more opportunity to optimize the code and was designed to work for 5x5
matrices. The result was an amazing 10 fold improvement in performance,
reducing the runtime for d0reco by 4%!

The 10th most time consuming method was floor(). This function was being used
in normalizing angle between 0 and 2 pi or between –pi and +pi. After careful
examination of the code we realized that in most cases the range of the input
was known and that a custom normalization routine taking this information in
consideration could be used. This allowed replacing, in most cases, a
normalization that involved calls to floor and floating point multiplication and
divisions (all slow operations) by just a if statement and a floating point addition
or subtraction.

One of the issues we noted earlier was the need to replace maps and multimaps
with more appropriate containers. As a simple example we decided to change
the underlying container of the class MapC from a multimap<double,Hit*> to a
vector<pair<double,Hit*> >. We chose a vector of pair<double,Hit*> to minimize
the changes needed. This new implementation only required the writing of a
lower_bound(), upper_bound(), find(), and insert wrapper functions (all one or
two liners). The next logical step would have been to sort this container only on
demand instead of inserting the values in sorted order. However, this requires a
careful analysis of the code using these MapC objects to find a proper place for a
one time sort. In order for this step to be possible, the algorithm needs to be
such that there is two separate phases: one filling the maps and one using the
maps. However, the current AATrack seems to intermix these two phases.

AATrack also contains several cases where the following code pattern is used
(directly or indirectly):

 For each hit in 1st detector element

 …

 if (areWeInCft) { … }

 For each hit in 2nd detector element

 …

 if (areWeInCft) { … }

 For each hit in 3rd detector element

 …

 if (areWeInCft) { … }

This pattern actually has two major disadvantages. Not only does it imply a lot of
redundant, time consuming, “if statements” inside the inner most loops, but it also
make it difficult to find unnecessary and redundant calculations. In the particular
case of AA::HitMap::makeTrack, after doing the re-factoring we discovered that
the code actually looked like:

 For each hit in 1st detector element

 …

 if (areWeInCft) { … }
 For each hit in 2nd detector element

 …

 if (areWeInCft) { … }

 For each hit in 3rd detector element

 …

 … (a) Calculation needed in only one of the detectors

 … (b) Calculation only depends on the outer loop indices

 if (areWeInCft) { … }

By separating makeTrack in 3 new functions (makeTrackCF, makeTrackSMT
and makeTrackSMTD), we were able to save some computation time by
completely removing the code (a) from detector’s routine that did not need it and
to move the code (b) at the proper places in the loops.

5 Improvement Plan

Here is our opinion of what changes should take place in this package and in
what order. All of the categories of changes listed here are covered in the
previous sections. The order is based on our limited knowledge of tracking and
the current code. The items further down in the list are considered more difficult.

• Constants replacement: Addresses code readability and may help locate
redundant checking of constraints. This organization helps when values of
constants need adjust and study.

• Container replacements and addition of buffer pools: This applies to
containers that are readily replaced or can easily have a buffer pool attached
to them. These changes should have a direct effect on speed by reducing
memory allocations and moving items closer together.

• Geometry modifications: This should make the code easier to understand and
simplify making algorithmic adjustments. These changes should also speed
up the algorithm.

• Hits and collections of Hits: Changes here should have an effect on speed
and also on the ability to comprehend and adjust this part of the system.

• State5: This involves separating out things like Kalman filter, position
determination, and helix manipulations. These changes are targeted at

improving a persons understanding of the code so that performance
improvements and adjusts can be made in the future.

• Track related structures: This includes things like Chains, Tracks, Vertices,
and extrapolation. Some of the container improvements from previous steps
may be difficult to implement in these parts of the code. This is the time to try
and replace those containers. Here we want the classes to be examined to
see if the problem addressed can be further decomposed (into helper or utility
classes). The data structure improvements could increase the execution
speed.

6 Conclusion

Other packages such as HTF also contain many of the problems listed in this
document, especially concerning use of the standard containers. HTF will likely
also benefit from some of the techniques used to improve AATrack.

One of the most important guidelines to follow when working in C++ on a
subsystem such as this is to produce single-purpose objects that capture and
control their state in a clear and easy to understand manner. Addressing the
issues in this document with this goal in mind will help reduce the complexity of
this code.

Following the Improvement Plan within this document and addressing the items
listed in Complications will help to reduce the execution speed of this package
and make it possible for others to understand and upgrade this body of code.

The presence of the Improvement Plan section indicates that we think that it is
best to start with the current AATrack package and make a series of changes to
it. For many of the items in the improvement list, we expect the impact on this
package to be dramatic. The algorithm concepts and rules will remain intact, but
the implementation may change significantly. Our hope is that sections can be
modified, replaced or revamped one at a time so that performance changes can
be observed.

7 APPENDIX

This section contains diagrams we drew in order to better understand the
organization of the data structures within AATrack. In many cases we produced
the bare minimum necessary to understand the relationships between the
different classes. In nearly all the classes, the methods and data members are
truncated (i.e. left out) and only the most relevant features exist. We also took
shortcuts in producing the diagrams and rely on attached notes because of the
complexity of working with UML and templates instantiations and typedefs.

